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Residence times and other functionals of reflected Brownian motion
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We study the residence and local times for a Brownian particle confined by reflecting boundaries, and
propose a general solution to the problem of finding the related probability distribution. Its Fourier transform
(characteristic function) and Laplace transform (survival probability) are obtained in a compact matrix form
involving the Laplace operator eigenbasis. Explicit combinatorial relations are derived for the moments, and
the probability distribution is shown to be nearly Gaussian when the exploration time is long enough. When the
eigenbasis (or a part of it) is known, the numerical computation of the residence time distributions is straight-

forward and accurate. The present approach can also be applied to investigate other functionals of reflected
Brownian motion describing, in particular, restricted diffusion in an external field or potential (e.g., nuclei
diffusing in an inhomogeneous magnetic field). Theoretical results for the local times are confronted with
Monte Carlo simulations on the unit interval, disk, and sphere.
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I. INTRODUCTION

Diffusion is a fundamental transport mechanism for many
physical, chemical, biological, and industrial systems [1,2].
In the course of its motion, each diffusing species explores
different regions of the bulk. Since reactive zones are often
heterogeneously distributed in the bulk (e.g., in a chemical
reactor or biological cell), the net outcome and the whole
functioning of the system strongly depend on how long the
diffusing species remains in these zones. These so-called
residence or occupation times are relevant for various
diffusion-influenced reactions, e.g., energy transfer [3,4] or
fluorescence quenching [5]. In optical imaging of turbid me-
dia, longer diffusive photon migration can indicate abnormal
regions in the tissue such as tumors [6]. The residence times
have thus been thoroughly studied for different stochastic
processes [7-19].

In most cases, however, the motion of diffusing species is
restricted by a geometrical confinement, resulting in drastic
modifications of the transport. The microscopic interaction
between the species and the surface depends on their physi-
cochemical or biological properties. For instance, paramag-
netic impurities dispersed on the boundary cause surface re-
laxation in nuclear magnetic resonance (NMR) experiments
[20,21]; catalytic seeds distributed over the boundary initiate
chemical transformation of the diffusing species [22-24];
permeability of the alveolar membranes allows oxygen trans-
fer to the blood [25,26]. A realistic description of these pro-
cesses at the microscopic level is a challenging problem,
demanding, for example, accurate molecular dynamics simu-
lations near the interface, or quantum mechanics calcula-
tions. At the time scale of the macroscopic transport process,
however, the contact with the interface is very rapid so that
the precise description of the interaction may be irrelevant (if
there is no anomalously long-time trapping or localization on

*denis.grebenkov @ polytechnique.edu

1539-3755/2007/76(4)/041139(13)

041139-1

PACS number(s): 05.40.Jc, 02.50.—r, 05.10.—a, 05.60.—k

the interface).1 In most cases, interactions yield one of two
opposite events: a species changes its state (loss of magneti-
zation, absorption, transfer, or chemical transformation) and
no longer participates in transport; or, after a short adsorp-
tion, interaction, or waiting time 7, the diffusive motion is
resumed from an & vicinity of the hitting point and continued
in the bulk, until the next contact with the interface, and so
on.

In other words, the species interacts with the boundary in
its neighboring & layer which is treated as a “black box:”
after a short time 7, the species is somehow “released” at a
distance of the order of €. In this coarse-grained picture, the
specific nature of the interaction determines the values (or
the probability distributions) of the adsorption time 7 and the
layer width e. What really matters here is that the species
leaves the interface and continues its diffusive motion.

The whole trajectory in a bounded domain is then often
modeled either by lattice random walks [27,28] or as a se-
quence of Brownian flights [29-32]. In the former case, the
interaction parameters ¢ and 7 determine the discretization
mesh and hopping rate, respectively [Fig. 1(a)]. Although
lattice random walks can be very easily implemented for
various domains, the numerical computation becomes ineffi-
cient in many practical situations when the microscopic pa-
rameters € and 7 are too small as compared to macroscopic
transport scales. In turn, Brownian flights are composed of
continuous Brownian trajectories which are interrupted by
discontinuous jumps in the vicinity of the interface [Fig.
1(b)]. In this case, efficient analytical tools can be applied to
investigate each Brownian flight, while the analysis of the
whole trajectory is still difficult, since the statistics of jumps
strongly depends on Brownian flights, and vice versa.

In this paper, we follow another strategy by modeling the
whole trajectory, even in close vicinity to the interface, as a

'At the same time, it is worth noting that certain interactions may
lead to trapping or long-time localization of the species on the
boundary. During this adsorption state, the species can travel long
distances along this boundary as in the case of some proteins at-
taching to DNA and searching for its specific regions. We do not
consider such cases in this paper.
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FIG. 1. Three “strategies” for modeling the trajectory of the
diffusing species with interactions in the & vicinity of the interface
(horizontal axis): (a) discrete random walks with step &, (b) Brown-
ian flights with jumps at distance &, and (c) the reflected Brownian
motion. In all three cases, the interaction is considered as a kind of
reflection event.

continuous path of reflected Brownian motion [Fig. 1(c)].
The simplest example of this process is the modulus of a
one-dimensional Brownian motion x,: X,=|x,|. Each time a
diffusing species crosses the boundary (end point 0), it is
reflected toward the bulk (positive semi-infinite interval). In
general, reflected Brownian motion is constructed as a solu-
tion of the stochastic differential equation accounting for re-
flections on the boundary of the confining domain [33].

In sharp contrast with ordinary Brownian motion, the con-
struction of reflected Brownian motion strongly depends on
the geometry of the confining medium, being especially so-
phisticated for irregular boundaries. From this point of view,
this strategy may sound like a complication of the interaction
event, when a simple linear jump is replaced by a trace of a
complex stochastic process. Moreover, the behavior of this
process in the vicinity of the interface may seem contradic-
tory to physical intuition. For example, the number of reflec-
tions during an infinitesimal time after the first contact with
the interface is infinite. It is important to stress, however, that
these mathematical “paradoxes” emerge only in the limit of
very short length scales, much smaller than the interaction
layer width e. Similarly, the ordinary Brownian motion can
reasonably model molecular dynamics only above a certain
length scale. Once a physical cutoff ¢ is fixed, the adsorption
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time 7 appears as the first exit time of the reflected Brownian
motion from the & vicinity of the boundary. Alternatively,
one can fix 7 and consider the width & to be spread, provid-
ing another way to adjust the present coarse-grained model-
ing to realistic interactions with the boundary. Note also that
reflected Brownian motion is implicitly employed whenever
a diffusion equation with Neumann boundary condition is
involved. Consequently, the reflected Brownian motion is in
fact a natural tool for modeling diffusive motion in confined
media.

What we gain by considering reflected Brownian motion
is that the whole dynamics can be treated in a single math-
ematical frame. In this paper, we illustrate this advantage for
investigation of the residence times and other functionals of
this stochastic process.

II. EIGENMODE EXPANSION

For a given function B(r) in a bounded domain () with a
smooth boundary aQ,2 we consider the random variable

¢>=de B(X,), (1)
0

X, being a random trajectory of the reflected Browman mo-
tion in (), starting with a given initial density p(ro Intu-
itively, the function B(r) can be thought of as a distribution
of “markers” to distinguish different points or regions of the
confining domain. When the diffusing species passes through
these regions, the random variable ¢ accumulates the corre-
sponding marks. In other words, different parts of the trajec-
tory are weighted according to the function B(r), encoding
thus the whole stochastic process. For example, if the bulk
contains absorbing sinks or relaxing impurities, B(r) can rep-
resent the distribution of their absorption or relaxation rates.
Here ¢ is the cumulant absorption factor penalizing the tra-
jectories that pass through the sinks. In NMR, the encoding
mechanism is experimentally realized by applying an inho-
mogeneous magnetic field B(r) (typically with a linear gra-
dient over the sample )). In this case, ¢ is the total phase
accumulated by an individual spin-bearing particle during its
restricted diffusion in this field [34].

A. Probability distribution

The probability distribution of the random variable ¢ will
be found in two steps. The first step is based on the classical
Kac result [7-9] relating the expectation E{e™"?%} to the solu-
tion of a diffusion equation with bulk relaxation. This expec-
tation includes the average of the functional e™"¢ over all
random trajectories {X,}y=,=, of the reflected Brownian mo-
tion between the starting point ry at time 0 and the arrival at

The boundary d€) of the confining domain () is assumed to be
smooth (twice continuously differentiable). This purely mathemati-
cal assumption, irrelevant for most physical problems, can be con-
siderably weakened.

’In general, B(r) can be weighted by an effective temporal profile
(see Refs. [34,45] for more details).
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point r at time ¢, as well as the average over all ry and r with
a given initial density p(r,) and weight (or pickup) function
p(r), respectively. In this case, Kac’s result reads as

e} = f dr m(r,7)p(r), 2)
Q
where m(r,?) obeys the equation
om(r,t
% — Am(r,?) + hB(r)m(r,?) =0, (3)

with the initial condition m(ry,7=0)=p(r,), and A=/ &x?
+o P r?xf, is the Laplace operator in d dimensions. The
reflecting character of Brownian motion is represented by
Neumann boundary conditions, when the normal derivative
at the boundary vanishes: dm(r,7)/dn=0 on J€). Note that
the diffusion coefficient (fixed to be 1 here) can be intro-
duced by rescaling the time variable. If B(r) is the distribu-
tion of bulk sinks (or their absorption rates), m(r,z) can be
interpreted as the probability density for a Brownian particle,
starting with the initial density p(r,), to arrive in an infini-
tesimal vicinity of the point r at time #, without being ab-
sorbed during its motion. The weight function p(r) allows
one to delimit the region of interest in the whole confining
domain. Since m(r,7) is weighted by p(r) in Eq. (2), only
those Brownian trajectories that arrived into pickup regions
at time ¢ can contribute to the expectation of ¢.

At the second step, the solution m(r,?) is expanded over
the complete orthonormal basis of the Laplace operator
eigenfunctions u,,(r):

m(r,1) = 25 ¢ (D140 (r). (4)

m

Substitution of this expansion in Eq. (3), multiplication by
u; (r), and integration over () yield a set of ordinary differ-
ential equations for the unknown coefficients c,,(z),

dc, (t
CﬁLt() + 2 (At + hB ) (1) =0, (5)

where the infinite-dimensional matrices B and A are

By = j dr u,,(r)B(r)u,, (r), (6)
Q

Am,m’ = 5m,m’)\m7 (7)

\,, being the Laplace operator eigenvalues. Thinking of c,,()
as components of an infinite-dimensional vector C(f), one
easily finds the solution of the above matrix equation. The
expectation E{e™"?} can thus be written in the compact ma-
trix form of a scalar product:

Ble = (U e 5V ), ®)

where the infinite-dimensional vectors U and U represent the
projections of the initial density p(r) and of the weight func-
tion p(r) onto the eigenfunctions u,,(r):
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U, = V" f dr i, (t)p(r), )
Q

U,=v'"? f dr u,,(r)p(r), (10)
Q

V being the volume of the domain. From a quantum-
mechanical point of view, the matrices A and B correspond
to a free Hamiltonian and a perturbing interaction, respec-
tively. The matrix e""B*M can thus be thought of as a kind
of evolution operator acting on the initial state p(r) (repre-
sented by vector U). The resulting density m(r,?) at time 7 is
then weighted by the pickup function p(r) (represented by

the vector U). It is important to note that the matrices B and
A do not commute.

The closed matrix form (8) is one of the central relations
in this paper. It provides a complete probabilistic description
of the random variable ¢. For positive h, the expectation
Fi{e”"%} can be interpreted as the Laplace transform of the
probability distribution of ¢, allowing one to find the latter
by inverse Laplace transform.

The formal substitution of h=—iq into Eq. (8) gives the
characteristic function of ¢:

E{e4?) = (U eWB-N ). (11)

Its inverse Fourier transform yields again the probability dis-
tribution of ¢, while the series expansion of e“® generates
all its moments:

ety =3, gy, (12
n=0 :
B. Moments

The moments of the random variable ¢ can also be writ-
ten according to their probabilistic definition (see [34] for
more details). For instance, the first moment is

E{¢}=J dtlf dl’oJ drlf dr; p(r)
0 Q Q Q

XGy, (ro, rl)B(rl)Gt—zl (ry,1p)p(ry),

where G,(r,r’) is known as the diffusive propagator, heat
kernel, or, equivalently, Green function of the diffusion equa-
tion. This equation has a simple probabilistic interpretation.
In fact, the random variable ¢ depends on the whole Brown-
ian trajectory by its definition (1). The contribution B(r;) to
this variable at time ¢, is obtained by averaging over all
Brownian trajectories passing through the point ri=X,.In
other words, we consider all random walkers starting at r
[with probability p(ry)dr,], diffusing until time 7, into the
vicinity of r| [with probability G, (ro.r,)dr,], and diffusing
until time ¢ into the vicinity of r, [with probability
G,_,l(rl,rz)drﬂ, which should be “allowed” by the pickup
function p(r,). Using the eigenmode expansion for the heat
kernel,
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o)

G/(r,x") = 2y (r)uy, (x)e™ ™,

m=0

one gets another expression for the first moment,

_)‘7712(t_ll) ﬁm
2

t o] o]
6= [0S S U enB, e
0

my=0 my=0

Representing the eigenvalues \,, by the diagonal matrix A,
one can write the above relation in a compact form,

E{¢} = f dt,(Ue M Be~M=10D) . (13)
0

Here, U, e, B, and U are the matrix representations in the
Laplace operator eigenbasis for p(r), G,/(r,r’), B(r), and
p(r), respectively. Surprisingly, this expression appears to be
more cumbersome than Eq. (11) for the characteristic func-
tion. It is worth noting that the diffusion equation (3) with an
imaginary last term was considered by Torrey to describe the
transverse magnetization evolution in NMR [35]. In that
case, the function B(r) might also be time dependent. A simi-
lar matrix formalism has recently been developed in this field
[34,36-39].

Higher-order moments can also be written in a compact
matrix form [34]:

t ' :
E{¢"=n! f dtlJ dty -+ f dtn(Ue—AtlBe—A(tz_tl)
0 al [

XB -+ Be M) Be=A=1) [7) (14)

or, with explicit matrix summations,

E{¢n} n‘ E 2 ml )nz m2,77'l3 ' Bm LM Uﬂ'ln+1

'+l
my=0 Myy41=0

XE (1 oo Ay ) (15)
where
Fy(tiNp s Ny ) f dtlf dty f dr,
-1
X e Mmftg Mmoo N (1)

These time integrals can be computed explicitly:

n+l n+l

1
Fithy oMy, ) = (1 2 e T
k=1 j=1 Nmy T )\mj
Jj#k

(16)

Although Egs. (15) and (16) are exact and can in principle be
used to calculate the moments, general analysis is still diffi-
cult.

C. Long-time behavior

A considerable simplification comes at long enough time ¢
so that tA ;> 1, where \, is the first nonzero eigenvalue (we
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recall that A\p=0 for the Neumann boundary conditions con-
sidered here). In this case, all terms containing factors e~
with m; >0 are exponentially small and can thus be ne-
glected. The only nontrivial contributions come from the
terms for which some indices m, are zero. For instance, di-
rect computation shows that

tl’l
F,(t; 0,0,...,00=—. (17)
n+1
When £k indices m M ,...,m; are Nonzero (here
i,...,I; denote arbitrary positions of nonzero entries, taking
distinct values between 1 and n+1), one finds
F,(t;0,...,0,\,, ,0,...,...,0,\,, ,0,...,0)
—_— I I St
il—l n+1—iy
tn—k -0 ) )
— E (- 1)6’ 2 ML \de -l
m; m.
=0 (n=k=Oosj=tq=izi, it

J1+ o +iEk=1)€ (18)
(see Appendices for more details and some examples). The
corrections to this relation are exponentially small and will
be neglected in the remainder of the paper. Consequently, the
moment [i{¢"} as a function of time 7 turns out to be a poly-
nomial of degree n at long time #:

E{¢"t = 2 a,, 1. (19)
k=0

According to Eq. (17), the coefficient in front of the highest-
degree term ¢" can be calculated by setting all indices
my,...,nm,,; to 0in Eq. (15):

=1 UBooBog "~ BooUoF,(t; 0, .

n times n+ 1

0) =1"(By)".

(20)
Here we employed the fact that Uozljozl for any initial
density p(r) and weight function p(r), since the lowest
eigenmode of the Laplace operator with Neumann boundary
conditions is a constant function: uy(r)=V""2. The coeffi-
cients in front of lower-degree terms are determined by other
choices of the indices my, ... ,m, ;. As shown in Appendices,
Eqgs. (15) and (18) lead to explicit relations for the moments.
However, even for n=4, the formulas are very lengthy, con-
taining a large number of terms.

Remarkably, the combinatorial analysis can be signifi-
cantly simplified by considering cumulant moments gener-
ated by a series expansion of the logarithm of the character-
istic function:

In E{giq¢}52(l:—')n< "> (21)
n=1 .

By substituting the series expansion (12) into the left-hand
side of the above relation and reexpanding the logarithm in a
power series, one can express the cumulant moments through
the ordinary moments, e.g.,
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<¢> =E{¢},
<¢* > =E{#’} - (E{¢}),
<@’ > =E{¢’} - 3E{@"}E{ b} + 2(E{¢})°,

<¢*' > =1{¢"} - 4E{ " E{ ¢} - 3(E{p*})*
+ 12E{*}(E{p})* — 6(E{p})*. (22)

In general, the following recursion formula holds [40]:

n—1

<¢'> =E{¢} -2 CT < ¢ > B¢ (23)
k=1

C* being the binomial coefficients. The cumulant moments
are particularly useful when a random variable is close to
being Gaussian. In fact, the characteristic function of a nor-
mally distributed random variable is Gaussian, so that the
power series expansion of its logarithm is simply a square
polynomial, i.e., all cumulant moments with n>>2 are strictly
zero. When the random variable is not Gaussian, the cumu-
lant moments may quantify its deviation from Gaussian.

In Appendices, we argue that all cumulant moments are
first-order polynomials of time #:

< ¢n > = bn,lt+ bn’o (24)

(up to exponentially small corrections). This statement is
demonstrated for the cumulant moments up to n=4 and nu-
merically checked for some higher moments. Its rigorous
proof requires a substantial combinatorial analysis and is be-
yond the scope of this paper. Moreover, we give explicit
formulas for the coefficients b, ; and b, in terms of the

matrices B and A and vectors U and U (see Appendices).
The expressions for the moments E{¢"} can be deduced us-
ing the above relations.

At this moment, several qualitative conclusions can be
made. Except for some trivial choices of the function B(r),
the random variable ¢ is not Gaussian since higher-order
cumulant moments are not zero. Since the variance <¢2?
linearly increase in time, it is natural to renormalize ¢ by V.
The first cumulant moment of the new random variable ¢/t
is still increasing in time, while its variance approaches a
constant. In contrast, higher-order cumulant moments with
n>2 go to 0. In the limit of very long time, the probability
distribution of the normalized random variable ¢/t be-
comes closer and closer to a Gaussian distribution with mean
by 1\t and variance b, ;, where

[

b1,1 = Bo,o, bz,l = 22 BO,m)\;llBO,m (25)

m=1

(see Appendices). As a consequence, the probability distribu-
tion of ¢ at long time 7 is close to

PHYSICAL REVIEW E 76, 041139 (2007)

FIG. 2. Diffusive motion of species restricted inside a bounded
confining domain ) with reflecting boundary Q). The residence
time ¢ indicates how long a diffusing species, starting somewhere
in the domain (e.g., in the subset A;), spends in a subset A until time
t. The local time shows how long the species spends in a close
neighborhood (g vicinity or & sausage d€),) of the boundary J€).

2
Pl € (x.x+dx)} = (=110 )

X
(27Tb2’1t)1/2exp<_ 2b2’1t

(26)

In the course of exploration, the mean value and the variance
increase linearly, spreading the Gaussian distribution and
shifting it to the right (Fig. 4).

D. Residence times

In the remainder of this paper, the matrix formalism will
be applied to investigate the residence times of reflected
Brownian motion. Let A be a subset of the confining domain
Q) (Fig. 2). How long does the diffusing species reside on
this subset? The characteristic function of this residence time
is given by Eq. (11) with the matrix B determined by substi-
tuting B(r)=I,(r) in Eq. (6):

B, = f dr u; (r)u,,(r), (27)
A

where ,(r) is the indicator function of the set A: 1,(r)=1 for
r €A, and 0 otherwise. This function can be thought of as a
“counter” which is turned on whenever the diffusing species
resides in A. One can estimate, for instance, the “trapping”
time that particles spend in deep and almost enclosed pores
(like fjords) of a catalyst.

With this technique, one can easily assess much finer and
more detailed statistics of residence times. For instance, to
compute the residence time of the diffusing species between
two times 0=t¢,<t,=t, a counter should be forced to turn
on only during this period. Since the evolution of the system
during two other periods (0,7,) and (#,,7) is unperturbed (no
counting or interaction), Eq. (11) can be modified as

E{eiq¢} — (Ue—/\’le(iqB—A)(fz—fl)g—A(f—fz)(7) .

Three matrix exponentials represent three successive time
periods of the evolution. This “matrix product rule” can be
applied in general, when one studies the residence time for a
sequence of time intervals: the matrices ¢85~ and ¢=A%
represent the periods of duration &t with and without count-
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ing, respectively. Moreover, one can change the region of
interest (set A) between different time periods. For example,
the characteristic function

E{eing} — (Ue(iqu—A)z/ze(—iqu—A)t/Z 17)

describes the difference in residence times for diffusing par-
ticles spending the first half time period in a subset A; and
the second half time period in a subset A, (note the minus
sign in front of igB3, to switch the counter into decreasing
mode). This could be a direct quantitative measure of ex-
change processes between these two subsets (e.g., two pores
of a medium).

Similar relations can be derived for the Laplace trans-
forms. So the expectation E{e™"?} can be interpreted as the
survival probability of the reflected Brownian motion up to
time ¢ when & is the relaxation, reaction, or trapping rate
inside the subset A. For instance, it can describe biological
reactions which take place inside certain organelles. For sev-
eral trapping subsets A; with different relaxation rates h;, hl3
in Eq. (8) is simply replaced by the sum X/,53;. More gen-
erally, different “encoding mechanisms” B;(r) can be super-
imposed; for example, the magnetic field inhomogeneity in
the whole sample and the bulk relaxation in a given subset.

While the matrix exponentials describe evolution, the vec-

tors U and U allow one to specify the initial and final states.
If p(r) and p(r) are uniform, the orthogonality of the eigen-

functions implies U,,= l~]m: S0 [since the lowest eigenfunc-
tion uy(r) is uniform]. In this case, the characteristic function
is determined by the first diagonal element of the evolution
operator. On the other hand, if the starting point r, and the
arrival vicinity r, are given, one takes p(r)=48(r-r;) and
p(r)=Vé(r-r,) to get U,=V"u (ro) and U,,=V"u,,r,).
The reflected Brownian motion can also be conditioned to
start and/or to arrive in two given regions.

In many situations, it is important to study the residence
time on the interface, which is called the (boundary) local
time:

1 t
¢,=lim— f ds 150, (X,), (28)

g—0 & 0

where d(), is the & vicinity of the boundary dQ: ),
={reQ: |[r-/Q|=e}. The local time ¢, is related to the
statistics of finite-distance reflections from the boundary,
which is crucial for intermittent Brownian dynamics
[29-32]. In addition, the local time plays an important role in
the definition of partially reflected Brownian motion [41] and
spread harmonic measures [42], determining the properties
of the Laplacian transport toward irregular interfaces [43,44].
The characteristic function of the local time is given by Eq.
(11) with the matrix B determined by substituting B(r)
=]I,;Q£(r)/ e in Eq. (6). When normalized by &, the integral
over the & vicinity d(), converges to the surface integral over
the (smooth) boundary ¢€), yielding
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Bm’m/:f dr u, (r)u,,(r). (29)
o0

Here, the passage to the limit e —0, which is in general
delicate and time consuming for numerical techniques (see
below), is implemented intrinsically. This is one of the cru-
cial advantages of the matrix formalism for computing local
times.

III. NUMERICAL IMPLEMENTATION

The present approach is a mathematical basis for efficient
numerical calculation of the residence and local times. The
increasing eigenvalues \,, enable one to truncate both matri-
ces A and B to moderate sizes, allowing rapid and very
accurate computation of the matrix exponentials in Eq. (11)
or similar relations. In this section, we illustrate the advan-
tages of this technique in comparison to conventional meth-
ods like Monte Carlo simulations.

A. Matrix formalism

For simple domains like a slab, cylinder, and sphere, the
Laplace operator eigenbasis is known explicitly, and the nu-
merical computation for a given functional in Eq. (1) is
straightforward. To illustrate this point, we consider the local
time of reflected Brownian motion in a slab of width 1 (i.e.,
the unit interval). In this case, the eigenvalues and eigenfunc-
tions of the Laplace operator are

N\, = 772m2,

m u,,(x) = €, cos(mmx),

with the normalization constants 6,,,:\5 for m>0, and ¢,
=1. According to Eq. (28), the local time statistics can be
determined by taking for B(r) the normalized indicator func-
tion of an ¢ vicinity of the confining domain. In the case of a
slab, it corresponds to two segments (0, ) and (1-g, 1) of
length & near the end points 0 and 1, respectively:

Bé(x) = i[(x) -O(x-e)+0Ox-14+8)-0O(x-1)],

O(x) being the Heaviside step function: @(x)=1 for x>0,
and O otherwise. Direct integration in Eq. (27) yields a
simple structure of the corresponding matrix 5°:

. sinf[re(m—m')] sin[me(m+m')]
B y = Bm m' )
mm ' 2me(m—m') 2me(m+m')
(30)
where
Bm,m/ = EmEm’[l + (_ l)m—m']. (31)

When ¢ goes to 0, the expression in large parentheses tends
to 1, implying that the elements B;‘m, converge to B, .

Substituting these elements from Eq. (30) in Egs. (25), one
obtains b; ;=2, independently of &, and
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o] . 2
§,1=$E L(sm 2778m> . (32)

2
I 2mem

In the limit € — 0, one has b, ;=2/3. This value could alter-
natively be found by substituting the elements B, from
Eq. (31) in Egs. (25).

In general, the direct use of the matrix B instead of B°
would not only simplify the computation but, more impor-
tantly, perform the passage to the limit € —0. As already
mentioned, this is one of the crucial computational advan-
tages of the matrix formalism in comparison with other tech-
niques. For instance, Monte Carlo simulations require a finite
€ vicinity for computing the local times, and the computation
becomes longer as ¢ is decreased (see below).

B. Monte Carlo simulations

To illustrate the advantage of the matrix technique, we
calculate the local time statistics by using Monte Carlo simu-
lations. For a fixed ¢, the time interval [0,¢] is divided into n
subintervals of duration d=¢/n. Small displacements of a
Brownian particle on the interval (0,1) are modeled as inde-
pendent normally distributed random jumps with variance 2
(the diffusion coefficient is 1). The starting point is chosen
randomly over the unit interval (uniform initial density). If
the Brownian particle jumps beyond the end point O or 1, it is
reflected back to the unit interval. For each simulated trajec-
tory, the local time is approximated as a fraction of steps
(normalized by &) at which the Brownian particle stayed in
either the subinterval (0,&) or (1—&, 1). No condition on
the arrival points is imposed (uniform weight function).” The
probability distribution of the local time is approximated by
simulating N trajectories of the reflected Brownian motion.
Similar Monte Carlo simulations were implemented for a
disk and a sphere.

Three computational parameters have to be chosen: the
width e, the number »n of subintervals, and the number N of
trajectories (walkers). The explicit formula (32) can be used
as a sort of criterion for the choice of a reliable value for €.
Figure 3 shows the coefficient b5, as a function of &. One
clearly sees the convergence to the limiting value 2/3 as &
— 0. For a numerical simulation, the width & should be cho-
sen inferior to 0.01 in order to get accurate statistics of the
local times. In what follows, ¢ is fixed to be 0.01.

For accurate modeling of the reflected Brownian motion
in & vicinities of the boundary, the typical displacement 26
at each step should be much smaller than the width e. This
condition yields a restriction for the choice of the number n
of subintervals: n>2t/&* (since d=t/n). In this study, we
consider the time 7 up to 10 which requires » to be taken on
the order of 10°.

Finally, the accuracy of the results obtained by Monte
Carlo simulations is of the order of 1/VN. We chose N

“It is worth noting that Monte Carlo simulations for reflected
Brownian motion conditioned to arrive at time ¢ in a small vicinity
of some point r are much more time consuming. Indeed, only a
very small fraction of trajectories arrive in this vicinity so that most
simulations have to be rejected.
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FIG. 3. (Color online) Coefficient b3 | for different & vicinities
of the boundary of the unit interval.

=10° to get the moments with three significant digits. It is
worth noting that these moments still remain approximate
since the width & is fixed so that the limit € — 0 is not taken.

Although each simulation step in Monte Carlo simula-
tions is extremely simple and rapid, the large number of
these steps (nN=10'?) results in long computational times.
The algorithm has been implemented in C and ran on an
Althon 1.4 GHz processor for around 50 h. In principle, this
computational time could be reduced by code optimization
or parallel computation, but it would still remain much
longer than the few seconds computation via matrix formal-
ism.

C. Numerical results

In this section, we present several numerical results,
mainly for illustrative purpose. A thorough numerical study
of the residence and local times of the reflected Brownian
motion will be presented elsewhere.

In Table I, we compare the theoretical and numerical val-
ues of the first four cumulant moments of the local time of
the reflected Brownian motion on the unit interval for uni-
form initial density and weight function. Their theoretical
calculation is based on the explicit form of the matrix B for
the unit interval (see Appendices). For more complex do-
mains, for which an explicit form is not available, the
infinite-dimensional matrices 5 and A should be truncated to
moderate sizes M X M and then computed numerically. To

TABLE 1. First four cumulant moments of the local time of the
reflected Brownian motion on the unit interval at =10 for uniform
initial density and weight function. The analytic results at long time
(obtained by using the coefficients from Table IV) are compared to
those computed numerically by truncation of the governing matri-
ces up to M=100 (third column), and by Monte Carlo simulation
(fourth column). Relative errors of the numerical values are indi-
cated in parentheses.

Theory Matrix approach Monte Carlo
<> 20.000 20.000(0.0%) 19.999(0.0%)
<¢*> 6.661 6.579(1.2%) 6.391(4.1%)
<> 2.665 2.584(3.1%) 2.391(10.3%)
<gt> 1.016 0.951(6.4%) 0.461(54.6%)
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FIG. 4. (Color online) Probability distribution of the local time
of reflected Brownian motion on the unit interval at times ¢
=1, 5, 10 (stars, triangles, and circles, respectively), and its
Gaussian approximation (26) with b; ;=2 and b, ;=2/3 (dashed-
dotted, dashed, and solid lines, respectively).

evaluate the accuracy of this approximation in the case of the
unit interval, we computed the cumulant moments by taking
M =100 (third column in Table I). The results of Monte Carlo
simulations are shown in the last column. The mean local
time (the first moment) is found accurately by both numeri-
cal techniques. As expected, higher-order cumulant mo-
ments, representing finer statistical properties of the prob-
ability distribution, are found with lower accuracy. The
matrix approach gives systematically better results. It is
worth noting, however, that the choice of the unit interval as
a confining domain allowed us to use the explicit form of the
Laplace operator eigenbasis. In general, the accuracy of the
matrix formalism is limited by the accuracy of numerical
tools used to find this eigenbasis in a given domain. Al-
though this computation may be time consuming for com-
plex shapes, it has to be performed only once as a prelimi-
nary step, allowing then for a rapid calculation of any
residence or local time.

More elaborate analysis of the cumulant moments by
Monte Carlo simulations is difficult or even impossible. For
instance, a linear fit of the cumulant moment <¢"> as a
function of time ¢ might in principle be used to compute the
coefficients b, o and b, ;. However, such a linear dependence
holds only for long enough time, thus prohibiting an accurate
computation of b, . In contrast, the matrix formalism pro-
vides explicit separate relations for both coefficients.

As shown in Sec. II C, the probability distribution of the
local time is getting closer and closer to normal as the ex-
ploration time ¢ increases. Figure 4 illustrates this statement
by comparing the Monte Carlo simulations to a Gaussian
approximation (26) with b;;=2 and b,;=2/3 at times ¢
=1, 5, 10. Even for t=1, the Gaussian approximation is a
relatively accurate approximation. Similar results (not pre-
sented here) were obtained for a disk and a sphere.

To investigate the deviation from Gaussian behavior, we
consider the probability distribution for a still smaller time
t=0.5. Figure 5 shows the numerical data obtained by Monte
Carlo simulations, and two Gaussian approximations. The
first one is given by Eq. (26), which accounts neither for
coefficient b, , nor for a finite width &. These two features
are corrected in the second Gaussian approximation, with the
variance <¢*> equal to 0.31. In spite of this correction,
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FIG. 5. (Color online) Probability distribution of the local time
of reflected Brownian motion on the unit interval at time 7=0.5
(circles), and two Gaussian approximations: the basic approxima-
tion (26) with by r=1 and b, ;t=1/3 (dashed line); and a more
accurate approximation with the same mean 1 but the variance
<¢?> =0.31, accounting for finite width £=0.01 (solid line).

both Gaussian approximations appear slightly on the right
with respect to the numerical data. This deviation has two
sources: higher-order cumulant moments give significant
contributions that cannot be neglected at small ¢; and expo-
nential corrections to the moments are also not negligible
and should be taken into account.

The deviation from the Gaussian distribution becomes
still larger at smaller time .

It is worth noting that all probability distributions we dis-
cussed above could be derived without Monte Carlo simula-
tions by using the matrix formalism alone. This computation
(not presented here) is based on the inverse Laplace or Fou-
rier transform of Eq. (8) or Eq. (11), respectively. We believe
that the comparison between our theoretical results and those
produced by a different computational technique (Monte
Carlo simulations) is more convincing.

IV. CONCLUSION

In conclusion, we presented an efficient approach to in-
vestigate residence times and other functionals of reflected
Brownian motion. In sharp contrast with previous works,
focused mainly on the mean residence time or limiting dis-
tributions, the present approach allows for determination of
the full probability distribution. Its Fourier transform (char-
acteristic function) and Laplace transform (survival probabil-
ity) were obtained in a compact matrix form involving the
Laplace operator eigenbasis. The matrix exponentials in Eq.
(I1) or similar relations are easy to calculate numerically
once the governing matrices B and A are constructed for a
given confining geometry. The concepts developed can be
extended to more complicated stochastic processes governed
by a general second-order elliptic differential operator hav-
ing a complete eigenbasis. One can also consider “compos-
ite” boundary conditions when one part of the interface re-
mains reflecting (Neumann), while the other is absorbing
(Dirichlet). In this case, “exit” or “stopping” events can be
incorporated.

The moments of residence times have been studied. The
use of the matrix representation allowed us to show that the
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moment E{¢"} is a polynomial of degree n at long time ¢.
The coefficients of this polynomial are expressed through the

two governing matrices B and A and vectors U and U by
using a diagram representation. Moreover, any cumulant mo-
ment <¢@"> was argued to be a linear function of ¢. This
statement was demonstrated for the cumulant moments up to
the order 4 and checked numerically for several higher or-
ders. As a consequence, the normalized residence time ¢/ \e";
is getting closer and closer to a Gaussian variable as time ¢
grows. These theoretical results have been successfully con-
fronted with Monte Carlo simulations.
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APPENDIX A: MOMENTS AT LONG TIME

As discussed in Sec. II B, Egs. (15) and (16) establish an
exact but still complicated representation for the moment
[i{ ¢}, requiring summation of multiple coupled infinite se-
ries. Using the exact formula (16) for the function
F(t;N, s ,)\mm), it is thus difficult to derive analytical
results. However, when time ¢ is long enough, many terms in
Eq. (15) are exponentially small. Their omission yields the
approximate but very accurate formula (18) which is repeat-
edly used in the remainder of these appendices. The compu-
tation of the moment [i{¢"} at long time ¢ is then reduced to
various choices of the indices my, ... ,m,,,; leading to non-
trivial contributions to Eq. (15).

Using the explicit form (18), one can derive many prop-
erties of the function F,(#;\,, , ...\, ). So, when j among
n+1 of its arguments are zero, this function is a polynomial
of degree j—1. For instance,

e )

>

n
Ny o K

F,(t; 0,...,0,\,,,0, ....0)
——— ——

i-1 n+1-i

(A1)

for j=n [the result is independent of the position i of the
nonzero entry \,, among the other (zero) entries]. In general,
the moment E{¢"} as a function of time ¢ turns out to be a
polynomial of degree n. In what follows, we investigate the
coefficients a, ; of this polynomial, defined as in Eq. (19).

As discussed in Sec. II C, the coefficient a, , in front of
the highest-degree term 7" is determined by Egs. (15) and
(17) when all n+1 indices m,,...,m,,, are equal to 0. Ac-
cording to Eq. (A1), the next term #"~! is provided by such
combinations of indices m,, ...,m,, that n of them are zero.
Collecting all these combinations, one finds the coefficient in
front of !

App1=N > (U BuoBoo Bo,of/o
m=1

+ UoBy My BoBoo - BooUp + -

m

+ UpBo.oBoo"** Bow\y, U, (A2)

m
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the ith term corresponding to the choice of the nonzero index
m;. In spite of the simplicity of this relation, it is convenient
to give another representation in matrix form. For this pur-
pose, we introduce two infinite-dimensional matrices:

5n1,m
Am,m’ =

0, m=0 or m' =0,

r)\;:, m>0 and m' >0,

Om,m’ = é\m,Oém’,O' (AS)

The first matrix .4 will be used to represent the summa-
tion over the inverse eigenvalues )\,_nl, taking also into ac-
count that the summation should start with m=1 (no term
with m=0). The second matrix O is intended to set the sum-
mation index to 0. In fact, the matrix O entering between any
two matrices X and Y splits them into two separate factors:
[XOY]ym=XpoYom- Using the matrices A and O, Eq.
(A2) can be written in a compact matrix form

Ayt =n[UABOBO: - -U + UOBABOBO---U + -+

n times n—1 times

+ UOBOBO---BAU].
—_——

n—1 times

(A4)

The above relation states that the coefficient a,,,_; can be
obtained by considering a sequence of n matrices B (started

and terminated by vectors U and U, respectively), putting
between them n matrices O and one matrix A in all possible
ways (n+1 terms). For further analysis, it is convenient to
introduce a formal diagrammatic representation for such ma-
trix products with the following notations: open circles,
placed only once on the left (vector U) and on the right

(vector U); full circle (matrix B); solid line between circles
(matrix A); integer powers of the matrix A are represented
by double, triple, etc., lines (see below); empty space be-
tween circles (matrix O).

In this diagrammatic representation, the coefficient a,, ,,_;
is obtained by taking a sequence of n full circles in a line
(started and terminated by two open circles) and connecting
two neighboring circles by one link in all possible ways:

(l,nvn,lzn[o—o e---® 0+ O ee---@ O + ..

+ o e oo—o]

For example,

a211:2[o—0 e 0+ 0Oeeo0 + Oe o—o]

(A5)

Since the matrix O splits matrix products into separate parts,
each of the above diagrams is a product of separate blocks,

e.g.,

o e o= (Z B(),mA;lle,o> Up.

m=1

In general, Eq. (18) can be reformulated as “diagrammatic
rules” for computing all coefficients a, ; of the polynomial
(19). Tedious but still elementary combinatorial analysis
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shows that a,,; is equal to n!/k! multiplied by the sum over
all diagrams formed by n full circles (preceded and suc-
ceeded by an open circle) with totally n—k links. Note that
double, triple, etc., links (denoting powers of A) are allowed.
Diagrams provide positive (negative) contributions to the
sum when k+k,+1 is even (odd), k, being the number of
empty spaces between circles (number of matrices ©). More
formally, if j; denotes the number of links between the ith
and (i+1)th circles such that j,+---+j,,;=n—k, then k, is
the number of such links j; that are equal to 0, and

n!

QA = E g (—1)k+k6+1 orverve ... e~O
" >0 i J1 J2 Jn+1
1+ ting1=n—k (A6)

where the tilde at the ith position may denote empty space
(j;=0) or single, double, triple, etc., lines (j;
=1, 2, 3, ...). For instance, one has

a2_0:2[o—0—o 0O + o 0 + O e—e—o0

—O:..O—O.:.O—O..:O]

(A7)

APPENDIX B: CUMULANT MOMENTS

Although the moments E{¢"} can be found with the help
of Egs. (19) and (A6), the number of diagrams contributing
to the coefficient a,,; grows rapidly with n. Moreover, these
coefficients have to be computed for each value of k ranging
from O to n. The computation of the moments E{¢"} thus
becomes too lengthy even for relatively small n. The analysis
can be significantly simplified by considering instead of
[i{¢"} the cumulant moments <¢"> defined as coefficients
in a series expansion (21) of the logarithm of the character-
istic function. The cumulant moment <¢"> is related
through the recursion formula (23) to the moments E{¢*}
with 1=k=n, and vice versa [see Eq. (22) for a few ex-
amples]. As a consequence, knowledge of the cumulant mo-
ments is completely equivalent to that of the (ordinary) mo-
ments. However, a diagrammatic representation for the
cumulants is in general simpler. Such a simplification comes
from the fact that the cumulant moment <¢"> captures the
features of the probability distribution precisely at the order
n, while lower-order features are explicitly subtracted so that
many diagrams cancel each other. To illustrate this point, we
calculate the second cumulant moment using the explicit dia-
grammatic representation (AS5) for the coefficient a,;, as
well as a,,=o9e0:

=< ¢2 N 2|:o o—e Oi|t+ |:CL270 - a%’o}-

In contrast with the second moment E{¢?}, the cumulant
<¢*> is a linear function of ¢. The isolated diagrams o on
the left and on the right represent, respectively, U, and l~]0,
which are both equal to 1 since the lowest eigenfunction
uy(r) is constant. One then finds the even simpler form
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< ¢ == 2![e—e]t + [as0 — aio}.

Although more tedious, the computation for the third and
fourth cumulant moments is similar, yielding again linear
dependences on t:

< ¢3 - = 3! [FFO — o=e O]t + [(13’0 — 3agpai,0 + 23?,0]»

-<¢4>:4![0—0—o—0 — =090 0 — eoe—0 o

— e—e oo | e=e o o}t

2 2 4
+ [a4,0 - 4(1310041,() - 304210 + 12&2?0(119 - 6(11Y0:| .

For the general case (any order n), we conjecture the follow-
ing result.

(1) The zero-order coefficient b, is expressed through
aro, 1 =k=n, by setting r=0 in the recursion formula (23)
for the cumulants:

b0 = ano— 2 CElbi ot ico- (B1)
k=1

This statement does not need a proof.

(2) The first-order coefficients b, ; are expressed through
the diagrams with disconnected open circles obtained by the
following combinatorial rule. We consider n full circles in a
line and connect them with n—1 links in all possible ways.
The coefficient b, ; is equal to n! multiplied by the sum over
all ropologically different diagrams, each of them being taken
with positive (negative) sign according to the even (odd)
number k, of empty spaces. For instance, one has

by = 1o (e) 0]
by = 2!

[0 (e=9) o]
by, = 3'[0 (e—0—0 — o=00) o]
[o (

b471 =4l|o (e—e—0—0 — e—e—0 ¢ — eoe—0 @

— e—0 &0 |+ e=e o o) o]

Note that the diagrams e=e—ee and e—e =+ are topologically
different (although their numerical values are the same; see
Table III), while the diagrams e=e—se and ee = e— are iden-
tical (and only one copy of them is taken into account). As
previously, the isolated diagrams o are equal to 1 and can
thus be omitted.

(3) The higher-order coefficients b, ;, with k=2 are equal
to 0.

These statements have been demonstrated above by direct
calculation of the cumulant moments up to n=4, and
checked by numerical simulations for several higher orders.
A rigorous mathematical proof for any 7 is still missing.

APPENDIX C: LOCAL TIME FOR A SLAB

In this section, we illustrate the computation of diagrams
for the local time of the reflected Brownian motion in a slab
(the unit interval). We recall that the specific form of the
matrix O relates the contribution of any diagram to the prod-
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TABLE 1II. Exact values of the coefficients ( (j) with j
=1, 2, 3, 4 for the local time of the reflected Brownian motion in
a slab (d=1), a disk (d=2), and a sphere (d=3).

j 1 2 3 4
&) 1/24 1/1440 1/60480 1/2419200
&) 1/8 1/192 173072 1/46080
40j) 1/10 1/350 1/7875 37/6063750

uct of contributions from its constituent connected diagrams,
e.g., (+—ee)=(e—s)(e). It is thus sufficient to compute only
connected diagrams. In the case of a slab, the explicit form
of the matrices B and A for the local time allows one to
calculate the exact contribution of any connected diagram.

We start with the diagram e— which represents the first
diagonal element of the matrix BAB:

E BO 'm "L 0-

Since By,,= m,O:\s"Z[l +(=1)"] for m>0, the summation is
carried out over even indices:

0—0722[ ( m)? 2V/2 = ()

o — BAB

m=1

where {(z) is the Riemann zeta function,
o1
(=2 —.
m=1 M

For a connected diagram composed of n+1 full circles
and n links j,...,j,, one finds

o e~Ve ... 00 — 22n+1 H Cl (jk?)7
J1 J2 Jn
k= (C1)
where
£(2))
Qm¥’

&0) = (C2)
Each connected diagram is then expressed in terms of the
values of the Riemann ¢ function at even integers. All these
values are related to Bernoulli numbers B,

(- 1 @mp

{2j)= Tj)!sz’

for which the generating function is known:

EBk

-1 i

One can thus compute {,(j) for any positive integer j (the
first four values are given in Table II), so that any connected
diagram can be found. Table IIT shows the values of several
connected diagrams that we need to calculate the first four
cumulant moments (see below).
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TABLE III. Connected diagrams needed to calculate the first
four cumulant moments, and their values for the local time of the
reflected Brownian motion on the unit interval, disk, and sphere
(with uniform initial density and weight function).

Slab Disk Sphere
° 1 1 1
. 2 2 3
— 173 172 3/5
o=e 1/180 1/48 3/175
o= 1/7560 1/768 2/2625
o=e 1/302400 1/11520 37/1010625
o 1/18 1/8 3/25
e=e 1/1080 1/192 3/875
—e=e 1/1080 1/192 3/875
e=e=e 1/64800 1/4608 3/30625
e =e 1/45360 1/3072 2/13125
o= 1/45360 1/3072 2/13125
oo 1/108 1/32 3/125
e=e o 1/6480 1/768 3/4375
—e=o 1/6480 1/768 3/4375
o o=s 1/6480 1/768 3/4375

The connected diagrams with open circles can in principle
be found in a similar way, although their computation de-
pends on the initial density and weight function. If both these
densities are uniform, any connected diagram containing an
open circle is equal to 0. This is a simple consequence of the
facts that Um=(~]m=5my0 and A, o=A,,=0 so that any ma-
trix containing U.A or AU vanishes. When the initial density
and/or the weight function is not uniform, the computation
can be performed in a similar way. If the odd components of
the vectors U and U are equal to 0, one finds for a connected
diagram composed of n+1 full circles and two open circles
with (n+2) links jg,jis.--»JnsJnse1 (given that j,>0 and

jn+1 >O)
oO~Veve ... 0~0~0O — O~e ... L 0~e
jO jl j7Ljn+l jl jn
00 ~
\/’Z UQm \/iz U2m

N ) ()

The first factor in the right-hand side is given by Eq. (C1),
while the last two factors can be written in a matrix form as

UAE and EAU, where the new vector € reduces the summa-
tion to even indices, &,,=[1+(=1)"]/12. In general, a second
contribution appears from summation over odd indices.

Using these results, one can analytically calculate any cu-
mulant moment of the local time of the reflected Brownian
motion in a slab at long time. So, in the case of uniform
initial density and weight function, the coefficients b, de-
termining the first four cumulant moments are given in Table
Iv.
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TABLE IV. Coefficients b, ; determining the first four cumulant
moments for the local time of the reflected Brownian motion on the
unit interval, disk, and sphere (with uniform initial density and
weight function).

Slab Disk Sphere
by, 2 2 3
by, 2/3 1 6/5
b3 4/15 172 72/175
by, 32/315 1/8 0
by 0 0 0
by -1/90 -1/24 -6/175
b3 -1/126 -1/32 —-12/875
by —73/18900 1/960 3492/336875

APPENDIX D: DISK AND SPHERE

The computation of the diagrams for the local time of the
reflected Brownian motion in a disk (cylinder) and a sphere
is very similar.

1. Disk

For a disk (or an infinite cylinder) of unit radius, the clas-
sical representation of the eigenfunctions involves two posi-
tive indices n and k [34,46-48],

i, ) = 2= B
k\7>s -

" \’/7_7‘] n(ank)
where J,(z) are the Bessel functions of the first kind. The
eigenvalues N\, = aﬁk are expressed through the positive zeros
a,; of the functions J)(z), and the normalization constants

B, are

Jn(ankr)cos(n QD) >

172
)\nk )
)\nk - l’l2

18nk = <

Substitution of these eigenfunctions in Eq. (29) yields

Bnk,n’k' = 25n,n’13nk18nk’ . (Dl)

2. Sphere

For a sphere of unit radius, the eigenfunctions are

unk(r’ 0) = /L_.’ijn(ankr)Pn(cos 6)’

V27 jn( @)
where the third index and the polar coordinate are omitted
[34,46-48]. Here P,(x) are the Legendre polynomials, and
ju2)=(m/22)"2] ,,12(z) the spherical Bessel functions. The
eigenvalues N, = a,, are expressed through the positive zeros
of the functions j,(z), and the normalization constants S,
are
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_( 2n+ 1)\, )1’2
Bu= Np—nn+1))

and Byo= V3/2. Substitution of these eigenfunctions in Eq.
(29) yields

Bnkﬁnk’

B rr=25 ’
nk,n'k n,n 27’l+1

(D2)

3. Connected diagrams

Assuming again a uniform initial density and weight func-
tion, we focus on the computation of the connected diagrams
without open circles. The specific structure of the matrix B
allows for calculation of the exact analytical values for any
connected diagram of this kind, having (n+1) full circles in
a line and n links j,...,j,:

n
o~ere . o~e = 2"d [ [ Culii).
J1 o J2 In el (D3)

where

L) = 2 Nghs (D4)
k=1

with the sum over the Laplace operator eigenvalues A\, ei-
ther for a disk (d=2) or for a sphere (d=3).

To calculate the values of these sums for integer j, we
introduce their generating function as

s = S, —

k=1 S+ Nok

(D5)

Since )\0k=a3k and ay, are zeros of some explicit functions,
the generating function can be found analytically as ex-
plained in [34,46]:

7 (5) cosh\e"; 1
)= =5
: 2\s sinhys 25
iy(iVs) 1

7] (S) = I - = s
g 2VsJ (iVs) S

sinh Vs 3

73(s) = : ~ 5.
’ 2(\s coshvs — sinhvs) 25

[the first formula is applicable for direct computation of £;(j)
for a slab]. Their multiple differentiations yield

(- 1) (y—' m(s))
G-\ o' )
The values for j=1, 2, 3, 4 are shown in Table II, while

Tables IIT and IV contain the connected diagrams and coef-
ficients b,y and b, ;, respectively.

&aj) = (D6)
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